Applications of a set-theoretic lemma

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Set and Collection Lemma

A set S ⊆ V (G) is independent if no two vertices from S are adjacent. Let α (G) stand for the cardinality of a largest independent set. In this paper we prove that if Λ is a nonempty collection of maximum independent sets of a graph G, and S is an independent set, then • there is a matching from S − ⋂ Λ into ⋃ Λ− S, and • |S|+ α(G) 6 ∣∣∣⋂Λ ∩ S∣∣∣+ ∣∣∣⋃Λ ∪ S∣∣∣. Based on these findings we provi...

متن کامل

Information Theoretic Interpretation of Szemerédi’s Regularity Lemma

Szemerédi’s regularity lemma is a fundamental tool in the theory of very large and dense graphs. In particular, it can be viewed as a structure theorem for arbitrary dense graphs which decomposes such graphs into a large number of parts such that the sub-graphs between these parts are random-like (simple-structured) on each pair, except for a small number of pairs. The regularity lemma has seve...

متن کامل

A Graph-theoretic Generalization of the Sauer-Shelah Lemma

We show a natural graph-theoretic generalization of the Sauer–Shelah lemma. This result is applied to bound the ‘∞ and L1 packing numbers of classes of functions whose range is an arbitrary, totally bounded metric space. ? 1998 Elsevier Science B.V. All rights reserved.

متن کامل

Set Theory 292B: Model-theoretic Forcing and Its Applications

In 1962 Paul Cohen invented set-theoretic forcing to solve the independence problem of continuum hypothesis. It turns out that forcing is quite powerful tool and it has applications in many branches of mathematics. In 1970s Abraham Robinson extended Cohen’s forcing to model theory and developed finite forcing and infinite forcing. In this term paper we study Robinson’s finite forcing and relate...

متن کامل

A simple proof of Zariski's Lemma

‎Our aim in this very short note is to show that the proof of the‎ ‎following well-known fundamental lemma of Zariski follows from an‎ ‎argument similar to the proof of the fact that the rational field‎ ‎$mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1984

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1984-0749905-3